
Abstract

High-end microprocessors are increasing in complex-
ity to push the limits of speed and performance. As a result,
analyzing these complex systems can be an arduous task.
Architectural simulators, acting as software processors,
are able to run programs and give statistics about the per-
formance of the code on the design. While these statistics
are valuable for identifying problems, they often do not
provide the fidelity necessary to diagnose the cause of slug-
gish performance. This paper presents a cross-platform
tool that can be used to visualize the flow of instructions
through an architectural processor pipeline model. The
Graphical Pipeline Viewer, GPV, uses a colorized pipeline
trace display to deliver an efficient diagnostic and analysis
environment. The resource view of the tool, which can dis-
play cycle statistics, aids in distinguishing possible bottle-
necks and architectural trade-offs. As such, the tool is able
to suggest code and architectural modifications to increase

program performance.1 2

1. Introduction
In an effort to optimize system performance, designers

must find and fix bottlenecks. Complex systems, such as a

microprocessor, can make this a very difficult task because

of the numerous interactions between the many compo-

nents of the design. Software developers are often unaware

of the structure of the hardware that executes their soft-

ware. A mismatch between a programmer’s conceptual

model of the system and the actual implementation could

result in “optimizations” that make the program run slower.

Similarly, hardware developers target architectural optimi-

zations to programs representative of their market. In doing

so, they must be keenly aware of the effects these changes

will have on the performance and utility of other compo-

nents.

Traditional methods for performance analysis use

summary statistics to describe the system’s behavior.

Architectural simulators are used to determine the large

range of effects that can result from a single modification.

Profiling can also be used in conjunction with a simulator

to locate key areas of interest in the program. Unfortu-

nately, cumulative statistics mask the intricacies of the pro-

gram execution. Statistics only give an idea of magnitude

and not sparsity, which can allow regions of poor perfor-

mance or adverse interactions between components to go

undetected. As a result, a long and tedious series of design

analyses is often required to obtain the resolution needed to

ascertain the root causes of performance bottlenecks.

The Graphical Pipeline Viewer (GPV), presented in

this paper, provides the capabilities and fidelity necessary

to quickly locate bottlenecks in complex systems. The

visualization interface allows users to zoom in or out to

detect the high-level trends in the code or study small

regions of code to discover the cause of a slowdown. In

addition, its execution comparison capabilities make it per-

fectly suited for evaluating hardware and software optimi-

zations. While visualization of statistics can help identify

potential problems, a tool must to be written such that a

user can unlock this potential.We have identified several

guidelines for making an architectural pipeline visualiza-

tion tool:

• Simple Generic Interface. The visualization tool needs to

be designed such that they can easily communicate with

an architectural simulator. Our tool does this by using text

streams that detail changes in pipeline and resource sta-

tus. While this is not an optimized interface, it does allow

for the easy interfacing to a variety of simulators.

• Cross Platform Capability. The more platforms that can

run the tool, the more useful it becomes. It is not uncom-

mon for universities to use a variety of computing envi-

ronments. As a side effect of being cross platform

compatible, a single tool can be used for development,

testing, as well as demonstrations.

• Ability to compare simulation runs. The tool needs the

ability to easily compare executions to determine the

impact that code or microarchitectural changes have on

performance. Our tool supports the visualization of multi-

ple runs in a single window for easy contrast.

• Ability to get both coarse grain and fine grain detail. A
course grain resolution is needed to determine when and

where performance is poor, and a detailed view permits

close examination of the cause(s) of the delay(s). GPV

supports this by allowing the user to change the level of

detail in the visualization display.

• Easy interpretation of graphics and symbols. The graph-

ics should be designed in such a way that regions of poor

performance are easy to isolate. Our approach color-

codes high latency events, making them easy to identify

on the visualization display. In addition, resource utiliza-

1. While we have tried to use colors that will have high

contrast when printed in grey scale, this paper is best

viewed in color. The tool that we describe uses color as

one of the key methods to differentiate events

2. The reader is referred to the technical report on

GPV for case studies that employ this technology. [19]

Performance Analysis Using Pipeline Visualization
Chris Weaver, Kenneth C. Barr, Eric Marsman, Dan Ernst, and Todd Austin

 Advanced Computer Architecture Laboratory

University of Michigan

Ann Arbor MI 48104

chriswea@eecs.umich.edu

tion is graphical (such as IPC, available functional units,

or instruction window utilization), which often reveals

problematic regions of the code.

The next section presents our versatile visualization

infrastructure that meets these tough demands. We discuss

the viewer and the generic input stream that makes it easily

adaptable to most simulators. We end with some conclu-

sions derived from this work.

2. Graphical Pipeline Viewer
Figure 1 gives an overview of our pipeline viewer. An

architectural simulator is used to produce a pipetrace

stream. This stream contains a detailed description of the

instruction flow through the machine, documenting the

movement of instructions in the pipeline from “birth” to

“death”. In addition, the pipetrace stream denotes various

other events and stages transitions that occur during an

instruction’s lifetime. The pipetrace stream from the archi-

tectural simulator can be sent directly into GPV or buffered

in a file for later analysis. GPV digests this information and

produces a graphical representation of the data. The graph

generated by GPV plots instructions in program order,

denoting over the lifetime of an instruction what operation

it was performing or why it was stalled. In addition, the

tool is able to plot any other numeric statistics on a

resource graph. Multiple traces can be displayed on the

screen at any given time for easy analysis. GPV also sup-

ports both coarse and fine grain analysis through the use of

a zoom function. Color coded events, which are user defin-

able, makes spotting potential bottlenecks a simple task.

The remainder of this section will outline the tool in detail,

including the main view, advanced features, trace file for-

mat, and other infrastructure with which GPV has been

designed to communicate..

2.1 Main Visualization Window
The main GUI window of GPV is illustrated in Figure

2. The GUI has two main graphical display windows, the

instruction window and the resource window. The instruc-

tion window plots instructions in program order on a time

axis (measured in cycles). For example, the third instruc-

tion bar in Figure 2, shows the execution of an ADDQ

instruction on a 4-wide Alpha simulator. As shown in the

figure, this instruction is stalled in Fetch (IF) until the stall

in the internal ld/st is resolved, after which it continues to

completion. This method for graphing instructions as they

flow through a pipeline is a common visual representation,

used in many textbooks including Hennessy and Patterson

[2]. The instruction axis contains tick mark to indicate the

GPV

Text
File

Architectural
Simulator

PERL TK

Pipetrace Stream

Screen

Figure 1 Overview the GPV usage flow

Figure 2 GPV Display Window showing the execution of instructions on a 4-wide Alpha ISA model (note that

internal micro-code operations, i.e. internal ld/st, are allowed to finish out of program order)

Instruction Axis

Resource Axis

Instruction Window

Resource Window

Coloring Legend

Selected Instruction Value

Selected Resource Value

cycle count. Additionally, the vertical axis will also display

the instruction mnemonic when the window is zoomed in

enough to fit legible text aside each instruction mark (typi-

cally two zooms from when the pipetrace is first loaded).

The right panel provides a legend of the coloring that is

used to illustrate the instruction’s flow through the different

stages of the pipeline. Significant events, such as branch

mispredictions or cache misses, are displayed in conjunc-

tion with the instruction’s transitions through the pipeline.

The use of color (with a user configurable palette) provides

an effective means for spotting potential bottlenecks. A

highlight option, which can flash the occurrences of a par-

ticular event, can be used as an alternative method of locat-

ing bottlenecks.

The bottom window, the resource view, displays

graphs of any numeric statistic provided in the pipetrace

file. GPV has been designed to plot both integer and real

statistics. Up to four data sets (our current development

extends this to ten) can be displayed simultaneously with

color coded axes that indicate the range of the variable.

Since there can be a wide variation in the data range of a

statistic, a separate x-axis is provided for each one of the

four resources that can be displayed at a time. Both the

resource and instruction views are plotted against simulator

time on the x-axis. This permits widely varying statistical

data sets to be plotted within the same window. To avoid

clutter, the GUI allows the selective hiding of individual

resource views. The resource view in Figure 2 is shown

plotting the IPC of a simulated program. As shown in the

figure, the IPC of the program starts to drop during the

cache miss. Once the miss has been handled and instruc-

tions start to retire, the IPC begins to recover. The flexibil-

ity of the resource view allows the user to chose the

statistics that are most valuable for performance analysis

and correlate these statistics to instructions flowing through

the pipeline. This simplifies the task of identifying bottle-

necks, as illustrated by the relationship of the cache miss to

the IPC drop in Figure 2.

The GUI provides several additional features that

assist in diagnosing performance bottlenecks. The display

can be zoomed in and out to trade off detail for trend analy-

sis. When the display is zoomed out it is straightforward to

determine areas of low performance by locating pipeline

trace regions with low slope. The slope of the line is given

by 1:

Thus for a perfect single wide pipeline (no data, con-

trol or resource hazards) with no multi-cycle stages the IPC

would be 1 (slope of -1). The display will show the areas of

low performance by a slope that becomes less steep (a

more horizontal line), and areas of high performance with a

steep slope.

The GUI also allows users to select instructions for

more information. Selecting an individual instruction dis-

plays the cycle time of execution and the instruction mne-

monic. This makes it possible to get information about

single instructions when the pipeline display is too small to

label each individual instruction. Similarly, the resource

view allows resource graph lines to be selected, which

returns the label, cycle number and instantaneous value.

Since the resource graphs are displayed as continuous lines

from discrete data in the pipetrace file, intermediate points

are calculated by linear interpolation.

2.2 Pipetrace File Format

Figure 3 illustrates an example of the pipetrace file

structure. Each new cycle is marked with the “@” charac-

ter. During a cycle, the changes to the pipeline are tracked

with the “+”,”-” and “*” symbols. The plus sign indicates

that a new instruction has entered the pipeline. The rest of

the line provides the unique instruction number, PC,

instruction attributes and assembly mnemonic of the new

instruction. A minus sign indicates that an instruction has

been removed from the pipeline. It should be mentioned

that an instruction can be removed from the pipeline for

reasons besides retirement (such as being squashed due to a

branch misprediction or micro-op removal), therefore the

“-” sign does not imply that the instruction ever entered the

commit stage. The asterisk symbol, “*” indicates that the

status of the instruction has changed. The rest of the line

displays the instruction number, events that are occurring

(such as cache misses), the latency of the longest event, and

which event to color if multiple events are occurring. At the

end of each cycle, tracked statistics are listed with a less

then sign “<“ and a greater then sign “>” on the left and

right of the variable name, respectively. GPV accepts the

value of the statistic in both integer and floating point for-

mat. Any of the statistics listed in a pipetrace file that begin

with an “NT”, signifying no trace, will be ignored by GPV

when it parses the file. This allows the user to easily anno-

tate the pipetrace file. We have found this format to be very

flexible. For example, we have successfully interfaced

GPV to a variety of simulators, including simulators run-

ning different instruction sets (ARM & Alpha)

2.3 Implementation Consideration
Although GPV takes generic text inputs, it was origi-

nally designed to work with the SimpleScalar tool set [18].

To this extent, two other Perl/Perl TK tools have been

developed to assist in the running of SimpleScalar with

GPV. A GUI front was included that contains fields for the

simulator, execution script, simulator options, benchmark

and a few other run parameters. Once filled in, this GUI

calls a Perl script, which independently executes the pro-

gram. This execution copies the benchmark (presently

Spec95[9], Spec2000[10][11], Mediabench[12], and a few

other benchmark), benchmark inputs, and simulator to a
1. The negative sign is because instruction progress in

the negative y direction.

slope
∆y
∆x
------ IPC()–= =

slope PipelineWidth PipelineEfficency×()–=

directory where the simulation is performed. The execution

of the simulation can be automatically piped into GPV.

These tools make it possible for a novice user to start simu-

lations using only graphical interfaces. The experienced

user, on the other hand, benefits from the flexibility of

launching simulations with or without GPV.

3. Conclusions
Visualization makes detailed comparisons of microar-

chitectural models expedient, simple and thorough. Visual-

ization also simplifies the simulator verification process, by

making the constraints (or lack of constraints) of the

instruction flow readily apparent to the developer. The

Graphical Pipeline Viewer (GPV) realizes the benefits in an

easy to use and portable implementation.

4. Acknowledgements
We would like to thank Matt Postiff and Charles

Lefurgy for their development of runspec, which is a preco-

cious Perl script for running and simulating spec95[9],

spec2000[10] and other various benchmarks. This script

was adapted to run any of the supported benchmarks

directly on GPV. When used in conjunction with the Sim-

pleScalar frontend GUI a total windows based simulation

environment is created.

This work was supported by the NSF CADRE pro-

gram, grant no. EIA-9975286, and by an equipment grant

from Intel.

References
[1] Intel. VTune: Visual Tuning Environment, 1997. http://

developer.intel.com/design/perftool/vtune/index.htm.

[2] DLXView.[online] Available: <http://yara.ecn.purdue.edu/~teamaaa/

dlxview/>, cited June 2001.

[3] J.L. Hennessy and D.A. Patterson, "Computer Architecture: A

Quantitative Approach," Morgan Kaufmann, San Francisco, CA, 1996.

[4] A.R. Lebeck, “Cache Conscious Programming in Undergraduate Cmputer

Science,” ACEM SIGCSE Technical Symposium on Computer Science

Education, SIGCSE ‘99.

[5] A.R. Lebeck and David A. Wood, “Cache Profiling and the SPEC

Benchmarks: A Case Study,” IEEE COMPUTER, 27(10):15-26, October

1994.

[6] Robert Bosch, Chris Stolte, Gordon Stoll, Mendel Rosenblum and Pat

Hanrahan,”Performance Analysis and Visualization of Parallel Systems

Using SimOS and Rivet: A Case Study,”Proceedings of the Sixth

International Symposium on High-Performance Computer Architecture,

January 2000.

[7] Robert Bosch, Chris Stolte, Diane Tang, John Gerth, Mendel Rosenblum,

and Pat Hanrahan,”Rivet: A Flexible Environment for Computer Systems

Visualization,” Computer Graphics 34(1), February 2000.

[8] Chris Stolte, Robert Bosch, Pat Hanrahan, and Mendel

Rosenblum,”Visualizing Application Behavior on Superscalar

Processors,”In Proceedings of the Fifth IEEE Symposium on Information

Visualization, October 1999.

[9] J. Reilly, "SPEC Describes SPEC95 Products and Benchmarks," SPEC

Newsletter, September 1995.

[10] "Standard Performance Evaluation Corporation (SPEC2000 CPU

benchmark)". Accessible on the Internet at World Wide Web URL http://

www.spec.org/osg/cpu2000/.

[11] B. Case. "SPEC2000 Retires SPEC92," The Microprocessor Report, vol.

9, 1995.

[12] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. “MediaBench: A tool

for evaluating and synthesizing multimedia and communications

systems,” In Proceedings of the International Symposium on

Microarchitecture, pages 330--5, December 1997

[13] RSA Security. "RC6," http://csrc.nist.gov/encryption/aes/round2/

AESAlgs/RC6, August 1999.

[14] Intel Corporation, "SA-110 Microprocessor Technical Reference

Manual," ftp://download.intel.com/designstrong/manuals/27805801.pdf.

[15] Intel Corporation, "Intel StrongARM SA-110 Microprocessors Instruction

Timing," ftp://download.in-tel.com/design/strong/applnots/27819401.pdf.

[16] Rebel.com NetWinder Family, http://www.rebel.com/netwinder.

[17] D. Kirovski, J. Kin and W. H. Mangione-Smith. "Procedure Based

Program Compression," Proceedings of the 30th Annual International

Symposium on Microarchitecture, December 1997.CPROF paper

[18] Doug Burger, Todd M. Austin and Steve Bennett. "Evaluating Future

Microprocessors: The SimpleScalar ToolSet". University of Wisconsin-

Madison. Computer Sciencies Department. Technical Report CS-TR-

1308, July 1996.

[19] C. Weaver, K. Barr, E. Marsman, D. Ernst, and T. Austin. “Performance

Analysis Using Pipeline Visualization”. http://www.eecs.umich.edu/

~taustin/papers/gpvtech.pdf

@ 154

* 61 CT 0x000 0 0x000

- 61

* 72 WB 0x000 0 0x000

* 71 WB 0x000 0 0x000

* 74 EX 0x001 30 0x001

* 75 EX 0x010 30 0x001

* 76 EX 0x000 0 0x001

+ 82 0x12002e558 0x00000000 [internal ld/st]

* 82 DA 0x000 0 0x000

* 79 DA 0x000 0 0x000

* 80 DA 0x000 0 0x000

* 81 DA 0x000 0 0x000

....more lines.....

<sim_num_insn> 55

<sim_cycle> 154

<sim_IPC> 0.3571

@ 155

* 76 WB 0x000 0 0x000

* 75 WB 0x000 0 0x000

* 78 EX 0x001 29 0x001

* 79 EX 0x010 29 0x001

* 80 EX 0x000 0 0x001

+ 86 0x12002e558 0x00000000 [internal ld/st]

* 86 DA 0x000 0 0x000

* 83 DA 0x000 0 0x000

+ 87 0x12002e558 0x00000000 ldq r1,0(r19)

* 87 IF 0x000 0 0x001

+ 88 0x12002e55c 0x00000000 addq r19,8,r19

* 88 IF 0x000 0 0x001

<sim_num_insn> 56

<sim_cycle> 155

<sim_IPC> 0.3613

<END VISUAL>

Figure 3 Sample pipetrace stream

The @ sign marks a start of a new simulation cycle
The - sign marks the removal of an instruction

The * sign indicates a change in the instruction status

Variables that the user want to track at in <> with the value The + sign indicates a new instruction

	Abstract
	Performance Analysis Using Pipeline Visualization
	1. Introduction
	2. Graphical Pipeline Viewer
	Figure 1 Overview the GPV usage flow
	Figure 2 GPV Display Window showing the execution of instructions on a 4-wide Alpha ISA model (no...
	2.1 Main Visualization Window
	2.2 Pipetrace File Format
	2.3 Implementation Consideration

	3. Conclusions
	4. Acknowledgements
	References
	[1] Intel. VTune: Visual Tuning Environment, 1997. http:// developer.intel.com/design/perftool/vt...
	[2] DLXView.[online] Available: <http://yara.ecn.purdue.edu/~teamaaa/ dlxview/>, cited June 2001.
	[3] J.L. Hennessy and D.A. Patterson, "Computer Architecture: A Quantitative Approach," Morgan Ka...
	[4] A.R. Lebeck, “Cache Conscious Programming in Undergraduate Cmputer Science,” ACEM SIGCSE Tech...
	[5] A.R. Lebeck and David A. Wood, “Cache Profiling and the SPEC Benchmarks: A Case Study,” IEEE ...
	[6] Robert Bosch, Chris Stolte, Gordon Stoll, Mendel Rosenblum and Pat Hanrahan,”Performance Anal...
	[7] Robert Bosch, Chris Stolte, Diane Tang, John Gerth, Mendel Rosenblum, and Pat Hanrahan,”Rivet...
	[8] Chris Stolte, Robert Bosch, Pat Hanrahan, and Mendel Rosenblum,”Visualizing Application Behav...
	[9] J. Reilly, "SPEC Describes SPEC95 Products and Benchmarks," SPEC Newsletter, September 1995.
	[10] "Standard Performance Evaluation Corporation (SPEC2000 CPU benchmark)". Accessible on the In...
	[11] B. Case. "SPEC2000 Retires SPEC92," The Microprocessor Report, vol. 9, 1995.
	[12] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. “MediaBench: A tool for evaluating and synth...
	[13] RSA Security. "RC6," http://csrc.nist.gov/encryption/aes/round2/ AESAlgs/RC6, August 1999.
	[14] Intel Corporation, "SA-110 Microprocessor Technical Reference Manual," ftp://download.intel....
	[15] Intel Corporation, "Intel StrongARM SA-110 Microprocessors Instruction Timing," ftp://downlo...
	[16] Rebel.com NetWinder Family, http://www.rebel.com/netwinder.
	[17] D. Kirovski, J. Kin and W. H. Mangione-Smith. "Procedure Based Program Compression," Proceed...
	[18] Doug Burger, Todd M. Austin and Steve Bennett. "Evaluating Future Microprocessors: The Simpl...
	[19] C. Weaver, K. Barr, E. Marsman, D. Ernst, and T. Austin. “Performance Analysis Using Pipelin...

