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We have leveraged ASIM’s port-based framework 
to create a parallel-hosted CMP simulator

What is ASIM?

Parallelizing ASIM

Tools and advice



Developed by VSSAD, the ASIM framework helps 
Intel manage performance model complexity

• Austin’s Triangle: 
“A simulator can be fast, accurate, or manageable.  Pick two.”

• Examples
– Simics: fast and modular
– Simplescalar: speed and um…
– ASIM: accurate and manageable

Accuracy

Manageability Speed



ASIM uses two primary hardware abstractions: 
modules and ports

• Modules: physical (and hierarchical) components of a design.
• Ports: communicate information (messages) between hardware modules 

across cycle boundaries.
– Fixed latency: data does not appear at read until latency requirement is met.
– Maximum bandwidth: writer may not overflow port with more data/cycle than it 

supports.
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Ports and modules encapsulate/publish all state 
changes, easing the modeling of an MP system
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Ports and modules encapsulate/publish all state 
changes, easing the modeling of an MP system

• Replicate CPU module + extra logic CMP
• Replicate CMP module + extra logic Multisocket
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The multisocket model is clocked sequentially and 
hierarchically.

System::Clock()
{ 

socket_0->Clock(cycle);
…
socket_m-1->Clock(cycle);
Interconnection_network->Clock(cycle);

cycle++;
}

CPU::Clock(UINT64 cycle)
{
fetch->Clock(cycle);
decode->Clock(cycle);
execute->Clock(cycle);
…

}

Chip::Clock(UINT64 cycle)
{
cpu_0->Clock(cycle);
…
cpu_n-1->Clock(cycle);
last_level_cache->Clock(cycle);

}



Performance on a uniprocessor host suffers as 
model grows

ASIM performance
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ASIM strives for accuracy and manageability…
can we get speed as well?

• Parallel clocking
– Model has inherent parallel 

structure
– Take advantage of SMP hosts
– Launch some modules in their 

own thread/host CPU

• What about synchronization?
1. Cycle-by-cycle barrier
2. Thread-aware ports



Cycle-by-cycle synchronization with barriers

• Choose a granularity
– Fine: thread-per module?  Coarse: thread per package?
– Tuned to computation-to-communication ratio

• Here, each CPU runs in its own thread

CPU::Run()
{
while(! done)
{
fetch->Clock(cycle);
decode->Clock(cycle);
...
cycle++
do_barrier();

}
}

• No side effects except through ports*.  Thus, barrier prevents races 
and preserves sequential consistency.

* well, there were, or I wouldn’t have had a job!



Port based synchronization

• Special SMP ports.
• The barrier can be removed:

CPU::Run()
{

while(! done)
{

fetch->Clock(cycle);
decode->Clock(cycle);
...
cycle++
do_barrier();

}
}
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SMP Port Concepts

• Let each thread run freely
• Each end of port can be in its own thread
• Consumer may not clock itself until corresponding data 

has been inserted into port

consumer’s cycle <= (port latency + producer’s cycle) 

– Consumer can “peer backward through a port” to monitor the 
progress of the producer

– Or, producer communicates through port to inform consumer(s) 
of its progress on every cycle

– Consumer stalls itself with this knowledge



SMP ports example with 10 cycle latency.  A 
snapshot in real time.
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Performance can improve nicely with proper 
mapping of modules to threads
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• Main performance limits
– Load balancing
– Synchronization overhead

• Proper mapping depends on…
– target system (number of sockets and cores)
– workload



Decisions made in the interest of modularity help 
us achieve speed with parallel ASIM

• Modules can be reused, duplicated, and exist in 
their own thread

• No communication or side-effects except via ports
– Barriers are sufficient synchronization
– Thread-aware ports are intriguing

• Initial performance improvements near 90%. 



Free tools including assist development

• NMSTL (http://nmstl.sourceforge.net/) 
– Contains a useful atomic reference counting strategy
– Create an Atomic type
– Overload ++, -- to use locked inc or cmpxchg8b macros

• Helgrind (http://valgrind.kde.org/)
– Pthread-specific data race detector “skin” for Valgrind
– Detect memory location accessed by > 1 thread.  Each such 

location should have (and use) a single pthread_mutex().
– Other detections, false-positive elimination
– Intel Threadchecker is an alternative

• Gprof (http://sam.zoy.org/writings/programming/gprof.html) 
– Need hack (Hocevar & Jönsson) to profile more than main()
– Intercept calls to pthread_create adding ITIMER_PROF
– LD_PRELOAD new definition; no need to modify program



Free tools including assist development

• Boost (http://www.boost.org/)
– Provides a nice threadsafe log
– Simple solution, locking the output device (screen or file), 

would slow program
– Instead…

• Each (threaded) module pushs address of message on a 
locked, shared queue: a much quicker operation.

• A single, separate writer thread crawls through the queue.



Visual Threads blatantly reveals blocked, waiting 
threads and provides other diagnostics
• Thread states

– Running
– Ready (ready to run when additional processors are available) 
– Waiting (blocked on a condition wait, join, page fault, or system call) 
– Blocked (blocked on a mutex or read-write lock) 

• Events
– Lock contention
– False sharing warnings

http://h21007.www2.hp.com/dspp/tech/tech_TechSoftwareDetailPage_IDX/1,1703,5062,00.html


