
Simulating a chip multiprocessor
with a symmetric multiprocessor

Kenneth Barr (MIT)
Ramon Matas-Navarro
Christopher Weaver
Toni Juan
Joel Emer

Intel Corporation

January 21, 2005

We have leveraged ASIM’s port-based framework
to create a parallel-hosted CMP simulator

What is ASIM?

Parallelizing ASIM

Tools and advice

Developed by VSSAD, the ASIM framework helps
Intel manage performance model complexity

• Austin’s Triangle:
“A simulator can be fast, accurate, or manageable. Pick two.”

• Examples
– Simics: fast and modular
– Simplescalar: speed and um…
– ASIM: accurate and manageable

Accuracy

Manageability Speed

ASIM uses two primary hardware abstractions:
modules and ports

• Modules: physical (and hierarchical) components of a design.
• Ports: communicate information (messages) between hardware modules

across cycle boundaries.
– Fixed latency: data does not appear at read until latency requirement is met.
– Maximum bandwidth: writer may not overflow port with more data/cycle than it

supports.

Fetch
Module

Decode
Module

Execute
Module

Cache
Module

Retire
Module

Fetch to
Decode

port

Decode to
Execute

port

Execute to
Memory

port

Memory to
Retire

port

Data cache to
Functional unit

port

Branch Predictor update
port

Ports and modules encapsulate/publish all state
changes, easing the modeling of an MP system

Fetch
Module

Decode
Module

Execute
Module

Cache
Module

Retire
Module

Last Level
Cache

CPU 0

Fetch
Module

Decode
Module

Execute
Module

Cache
Module

Retire
Module

CPU 1

• Replicate CPU module + extra logic CMP• Replicate CPU module

Ports and modules encapsulate/publish all state
changes, easing the modeling of an MP system

• Replicate CPU module + extra logic CMP
• Replicate CMP module + extra logic Multisocket

Interconnection
network

So
ck

et
 0

Fetch
Module

Decode
Module

Execute
Module

Cache
Module

Retire
Module

CPU 0

Fetch
Module

Decode
Module

Execute
Module

Cache
Module

Retire
Module

CPU n-1

So
ck

et
 m

-1

Fetch
Module

Decode
Module

Execute
Module

Cache
Module

Retire
Module

CPU 0

Fetch
Module

Decode
Module

Execute
Module

Cache
Module

Retire
Module

CPU n-1

Last
Level
Cache

Last
Level
Cache

The multisocket model is clocked sequentially and
hierarchically.

System::Clock()
{

socket_0->Clock(cycle);
…
socket_m-1->Clock(cycle);
Interconnection_network->Clock(cycle);

cycle++;
}

CPU::Clock(UINT64 cycle)
{
fetch->Clock(cycle);
decode->Clock(cycle);
execute->Clock(cycle);
…

}

Chip::Clock(UINT64 cycle)
{
cpu_0->Clock(cycle);
…
cpu_n-1->Clock(cycle);
last_level_cache->Clock(cycle);

}

Performance on a uniprocessor host suffers as
model grows

ASIM performance

1 2 3 4 5 6 7 8

Number of simulated cores
Cycles per second

ASIM strives for accuracy and manageability…
can we get speed as well?

• Parallel clocking
– Model has inherent parallel

structure
– Take advantage of SMP hosts
– Launch some modules in their

own thread/host CPU

• What about synchronization?
1. Cycle-by-cycle barrier
2. Thread-aware ports

Cycle-by-cycle synchronization with barriers

• Choose a granularity
– Fine: thread-per module? Coarse: thread per package?
– Tuned to computation-to-communication ratio

• Here, each CPU runs in its own thread

CPU::Run()
{
while(! done)
{
fetch->Clock(cycle);
decode->Clock(cycle);
...
cycle++
do_barrier();

}
}

• No side effects except through ports*. Thus, barrier prevents races
and preserves sequential consistency.

* well, there were, or I wouldn’t have had a job!

Port based synchronization

• Special SMP ports.
• The barrier can be removed:

CPU::Run()
{

while(! done)
{

fetch->Clock(cycle);
decode->Clock(cycle);
...
cycle++
do_barrier();

}
}

Fetch
Module

Decode
Module

Execute
Module

Cache
Module

Retire
Module

Fetch
Module

Decode
Module

Execute
Module

Cache
Module

Retire
Module

Last Level $
Module

CPU 0

CPU 1

SMP Port Concepts

• Let each thread run freely
• Each end of port can be in its own thread
• Consumer may not clock itself until corresponding data

has been inserted into port

consumer’s cycle <= (port latency + producer’s cycle)

– Consumer can “peer backward through a port” to monitor the
progress of the producer

– Or, producer communicates through port to inform consumer(s)
of its progress on every cycle

– Consumer stalls itself with this knowledge

SMP ports example with 10 cycle latency. A
snapshot in real time.

Producer

Consumer
?

10090807060

Producer

Consumer

read

write

Producer

Consumer

write

read

Cannot occur: data
not ready at time of
load! Consumer
should have stalled.

Producer Cycle + Latency = 90
Consumer cycle = 70

Data will be ready
for consumer.

Simulated cycle

X

Producer Cycle + Latency = 100
Consumer cycle = 100

Data will be ready just
in time for consumer.

Performance can improve nicely with proper
mapping of modules to threads

Number of simulated sockets

In
st

ru
ct

io
ns

 p
er

 s
ec

on
d 1 host thread

2 host threads
4 host threads

• Main performance limits
– Load balancing
– Synchronization overhead

• Proper mapping depends on…
– target system (number of sockets and cores)
– workload

Decisions made in the interest of modularity help
us achieve speed with parallel ASIM

• Modules can be reused, duplicated, and exist in
their own thread

• No communication or side-effects except via ports
– Barriers are sufficient synchronization
– Thread-aware ports are intriguing

• Initial performance improvements near 90%.

Free tools including assist development

• NMSTL (http://nmstl.sourceforge.net/)
– Contains a useful atomic reference counting strategy
– Create an Atomic type
– Overload ++, -- to use locked inc or cmpxchg8b macros

• Helgrind (http://valgrind.kde.org/)
– Pthread-specific data race detector “skin” for Valgrind
– Detect memory location accessed by > 1 thread. Each such

location should have (and use) a single pthread_mutex().
– Other detections, false-positive elimination
– Intel Threadchecker is an alternative

• Gprof (http://sam.zoy.org/writings/programming/gprof.html)
– Need hack (Hocevar & Jönsson) to profile more than main()
– Intercept calls to pthread_create adding ITIMER_PROF
– LD_PRELOAD new definition; no need to modify program

Free tools including assist development

• Boost (http://www.boost.org/)
– Provides a nice threadsafe log
– Simple solution, locking the output device (screen or file),

would slow program
– Instead…

• Each (threaded) module pushs address of message on a
locked, shared queue: a much quicker operation.

• A single, separate writer thread crawls through the queue.

Visual Threads blatantly reveals blocked, waiting
threads and provides other diagnostics
• Thread states

– Running
– Ready (ready to run when additional processors are available)
– Waiting (blocked on a condition wait, join, page fault, or system call)
– Blocked (blocked on a mutex or read-write lock)

• Events
– Lock contention
– False sharing warnings

http://h21007.www2.hp.com/dspp/tech/tech_TechSoftwareDetailPage_IDX/1,1703,5062,00.html

